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The general relativistic equations for a homogeneous isotropic metric of the most 
general form are considered. It is concluded that an event horizon is a possible 
alternative to a cosmological singularity for "usual" matter. This conclusion is 
illustrated by the case of a fiat spatial universe. 

It is known (Weinberg, 1972) that the homogeneous isotropic metric of 
most general form can be written in the following way: 

d s  2 = - b ( t )  d f l  + a2( t ) [du  2 + k ( u d u ) 2 / ( 1  - ku2)] (1) 

For spherical coordinates the expression (1) reduces to the form 

d s  ~ = - b ( t )  d t  2 + a 2 ( t ) { [ R ' 2 / ( l  - kR2)] d r  2 + R2(d02 (2) 
+ sin20 d~b2)} 

where R2(r) = u 2 (the prime denotes differentiation with respect to r). 
With the exception of  the degenerate case R'(r)  = 0, for the metric (2) 

the general relativistic equations G~ = KT~ have the form 

(k  + d2 /b) /a  2 = Ke./3 (3a) 

a / a  - a b / ( 2 a b )  = - Kb(¢ + 3P)/6 (3b) 

where ¢ = T O and - P  = T[ = T~ = T 3 (the dot denotes differentiation with 
respect to t). 

It is assumed as a rule that the interval (2) can be reduced to an expression 
including g0o0) - - 1  with the help of the time coordinate transformation 
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i = f , f b  dr. In this case from equation (3b) for b - 0 and b - 1 we conclude 
the inevitability of an initial singularity, insofar as the curve a(t) is convex 
up [see the discussion in Weinberg (1972)]. 

One possible exception to the initial singularity is a transition to the de 
Sitter vacuum solution e = - P  4 : 0  (Tolman, 1969). This solution is the 
"ideological foundation" for the inflationary cosmology (Starobinski, 1979; 
Guth, 1981). 

The other possibility to avoid a cosmological singularity (for "usual" 
matter) is the presence of  an event horizon b0 = 0. In this case the above- 
mentioned transition to the coordinate ? is inadmissible at b = 0. 

Let us consider therefore the general case with arbitrary function b(t).  
According to equation (3b) the following asymptotic constraint exists 

near the event horizon between functions a and b: a2 _ b. Hence, the event 
horizon corresponds to a minimum a(t)  and it is the initial point of the 
evolution of  the universe. 

In this case the matter of  the universe can be "usual," i.e., obey the 
conditions 

e >-- P :> 0 (4a)  

0 <-- C 2 ~ d P / d e  -< 1 (4b) 

Let us consider, for example, the flat spatial universe at 

a = a0 + oLt z (5a) 

b = "Vt2(1 + 13t 2) (Sb) 

where a0, a,  [3, ~ are positive constants. 
Obviously, the initial point of the expansion of  the universe t = 0 

corresponds to the cosmological event horizon. 
Substituting the expressions (5) into the system (3), we obtain 

K~ = (12oL2/'y)a-2(l + [5t2) - l  (6a) 

v,P = (4od~/)([3a0 - a )a -2 ( l  + [3f2) -2  (6b) 

The conditions (4) for the functions (6) are fulfilled for the following correla- 
tion between the parameters: 

1 ----- 13a0& <-- [3 + (73)1n]/4 (7) 

Thus, the event horizon is inevitable for "usual" matter as the alternative 
to a cosmological singularity. 

Hence, the initial state of  the universe can be considered as an untravers- 
able wormhole (Morris et  al. ,  1988). This interpretation admits, for example, 
the exotic case of  a topological transition from (3 + 1)-space to 4-space that 
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agrees with the result of Ellis e t  al.  (1992). Then it is possible that the "big 
bang" is the transformation of some space coordinate into a time coordinate. 
The analogous situation take place for the transition between Lorentzian and 
Euclidean wormholes (see, for example, Khalatnikov and Schiller, 1993). 
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